Name		JMJ	Date
			Physical Science
		Trimester 2 Review	, 0.00 00.000
Chapte	r 1		
•		ded to fully describe your position? REFERENCE POINT, DIRECTION, & DISTANCE	
•		rence direction. THE POSITIVE DIMENSION RICARDO AND JOE'S FROM HW S	
•		difference between distance and displacement? (remember what are the 2 question v	vith displacement)
		STANCE IS THE LENGTH OF THE PATH SPLACEMENT IS THE SHORTEST ROUTE	
•		nd contrast the different types of speed.	
		STANTANEOUS: PARTICULAR INSTANT IN TIME	
		NSTANT: SAME DISTANCE EVERY SECOND	
		ERAGE: TOTAL DISTANCE OVER TOTAL TIME	
•	What is the i	unit of speed? What is the equation to find average speed? METERS/ SECOND	S=D/T
•		find the average speed of an object on a distance-time graph? FIRST POINT AND La	AST POINT
•		ocity? SPEED IN A CERTAIN DIRECTION	V OVED A DEDIOD
•		eleration? What are the three ways an object can accelerate? CHANGE IN VELOCIT` . SPEEDING UP, SLOWING DOWN, CHANGING DIRECTION	Y OVER A PERIOD
•		formula for acceleration? A=VF-VI/T	
•		g his bicycle uphill. At 5s, his speed is 25m/s. But 5 s later, his speed is 15 m/s. What	is the acceleration?
	-2 M/S/S		
•		ou can distinguish the difference between distance-time and speed-time graphs. JUS	T D-T GRAPHS
Chapte			
•		ct and 3 noncontact forces. NTACT: FRICTION, AIR RESISTANCE, FOOTBALL TACKLE	
		NCONTACT: PRICTION, AIR RESISTANCE, POOTBALL TACKLE	
•		difference between weight and mass? WEIGHT CHANGES, MASS DOES NOT CHA	NGE
•		rity and the law of universal gravitation. WEIGHT EXERTED ON AN OBJECT DIST	
•	Give an exa	mple for each type of friction.	
		ATIC: NOT MOVING- PUSHING A BUILDING	
		IDING: MOVING- PUSHING A DRESSER AND IT MOVING	
		UID: SKYDIVING /ton's Laws of Motion. Give an example of each.	
		RST: CAR CRASH	
		COND: PUSHING AN EMPTY DESK VERSUS ONE WITH SOMEONE IN IT	
	o TH	IRD: A BAT HITTING A BALL	
•		lance and unbalanced forces.	
		LANCED: DOES NOT CHANGE THE MOTION OF THE OBJECT IBALANCE: MAKES AN OBJECT ACCELERATE	
		ne coffee in the cup go flying forward when the driver suddenly stops? INERTIA	
•		= more MASS	
•		formula for Newton's second law? F=MA	
•		an object moving in circular motion? CENTRIPETAL FORCE	
•		mentum? What is the formula? MOMENTUM IS HOW HARD IT IS TO STOP A MOVI	NG OBJECTDO
		TO KNOW FORMULA	
•		ore momentum: a slow moving skateboard or a <mark>fast moving truck</mark> ?	
•		two different types of collisions. ASTIC: TWO BASKETBALL HITTING AGAINST EACH OTHER	
		ELASTIC: CARTOON RUNNING INTO A WALL	

List the 6 types of simple machines and give three examples of each one.

INCLINED PLANE: LADDER, STAIRS, WINDSHIELD

SCREW: JAR LID, LIGHTBULB, NUT AND BOLT

WEDGE: AXE, DOORSTOP, BOW OF A BOAT

PULLEY: FLAGPOLE, CRANE, CLOTHESLINE

LEVER: DOOR, CAN TAB, FISHING ROB

Define the three types of levers and give an example of each.

What is the mechanical advantage of each type of lever?

FIRST: SEESAW

o FIRST: EQUAL TO 1

SECOND: PAPERCUTTER THIRD: BASEBALL BAT

WHEEL AND AXLE: DOORKNOB, STEERING WHEEL, ROLLERSKATES

Explain the difference between the three classes of levers (First= fulcrum, secOnd= output, third= input)

Chapter 3

- SECOND: GREATER THAN1
- o THIRD: LESS THAN 1
- · What is the MA of a pulley? A screwdriver?
 - PULLEY: COUNT THE SECTIONS OF ROPE EXCLUDING THE ONE YOU PULL DOWN ON
 - o SCREWDRIVER: GREATER THAN ONE
- What are the three ways that a simple machine can make work easier?
 - CHANGE THE SIZE OF THE FORCE
 - CHANGE THE DISTANCE THE FORCE ACTS ON
 - CHANGE THE DIRECTION OF THE FORCE
- Output work never exceeds input work because >>> SOME INPUT WORK IS CONVERTED INTO THERMAL ENERGY BECAUSE OF FRICTION
- What is IMA? THE MECHANICAL ADVANTAGE WHEN FRICTION DOES NOT EXIST. MACHINES CANNOT OPERATE AT THIS
- What is work? FORCE APPLIED OVER A DISTANCE What is power? WORK AT A RATE IN TIME

YOU DO NOT NEED TO KNOW THESE!

- · What are they measured in?
- · What are the formulas for each?
- If the object is moving, it has what type of energy?
- If the object is getting lifted, it has what type of energy?

Balancing equations

1)	Au ₂ S ₃ +	3 H ₂	\rightarrow	2 Au	+	3H ₂ S
2)	3Hg(OH) ₂ +	2_H ₃ PO ₄	\rightarrow	Hg ₃ (PO ₄) ₂	+	6H ₂ O
3)	SiO ₂ +	4HF	\rightarrow	SiF4	+	2H ₂ O
4)	12HClO ₄ +	P ₄ O ₁₀	\rightarrow	4H ₃ PO ₄	+	6Cl ₂ O ₇
5)	2_As +	6NaOH	\rightarrow	2Na₃AsO₃	+	3H ₂

Formulas:

Speed= distance/ time

*** Don't forget Distance-time graphs***

** first points & last points**

Force = mass x acceleration

Acceleration= Vf-Vi/time