\qquad

Trimester 2 Review

Chapter 1

- What is needed to fully describe your position? REFERENCE POINT, DIRECTION, \& DISTANCE
- Explain reference direction. THE POSITIVE DIMENSION.... RICARDO AND JOE'S FROM HW SHEET
- What is the difference between distance and displacement? (remember what are the 2 question with displacement)
- DISTANCE IS THE LENGTH OF THE PATH
- DISPLACEMENT IS THE SHORTEST ROUTE
- Compare and contrast the different types of speed.
- INSTANTANEOUS: PARTICULAR INSTANT IN TIME
- CONSTANT: SAME DISTANCE EVERY SECOND
- AVERAGE: TOTAL DISTANCE OVER TOTAL TIME
- What is the unit of speed? What is the equation to find average speed? METERS/ SECOND......S=D/T
- How do you find the average speed of an object on a distance-time graph? FIRST POINT AND LAST POINT
- What is velocity? SPEED IN A CERTAIN DIRECTION
- What is acceleration? What are the three ways an object can accelerate? CHANGE IN VELOCITY OVER A PERIOD OF TIME..... SPEEDING UP, SLOWING DOWN, CHANGING DIRECTION
- What is the formula for acceleration? $\mathrm{A}=\mathrm{VF}-\mathrm{VI} / \mathrm{T}$
- Mark is riding his bicycle uphill. At 5 s , his speed is $25 \mathrm{~m} / \mathrm{s}$. But 5 s later, his speed is $15 \mathrm{~m} / \mathrm{s}$. What is the acceleration? -2 M/S/S
- Make sure you can distinguish the difference between distance-time and speed-time graphs. JUST D-T GRAPHS

Chapter 2

- List 3 contact and 3 noncontact forces. CONTACT: FRICTION, AIR RESISTANCE, FOOTBALL TACKLE
- NONCONTACT: GRAVITY, MAGNETIC, ELECTRIC
- What is the difference between weight and mass? WEIGHT CHANGES, MASS DOES NOT CHANGE
- Explain gravity and the law of universal gravitation. WEIGHT EXERTED ON AN OBJECT... DISTANCE AND MASS
- Give an example for each type of friction.
- STATIC: NOT MOVING- PUSHING A BUILDING
- SLIDING: MOVING- PUSHING A DRESSER AND IT MOVING
- FLUID: SKYDIVING
- Explain Newton's Laws of Motion. Give an example of each.
- FIRST: CAR CRASH
- SECOND: PUSHING AN EMPTY DESK VERSUS ONE WITH SOMEONE IN IT
- THIRD: A BAT HITTING A BALL
- Describe balance and unbalanced forces.
- BALANCED: DOES NOT CHANGE THE MOTION OF THE OBJECT
- UNBALANCE: MAKES AN OBJECT ACCELERATE
- Why does the coffee in the cup go flying forward when the driver suddenly stops? INERTIA
- More inertia= more \qquad MASS
- What is the formula for Newton's second law? F=MA
- What keeps an object moving in circular motion? CENTRIPETAL FORCE
- What is momentum? What is the formula? MOMENTUM IS HOW HARD IT IS TO STOP A MOVING OBJECT...DO NOT NEED TO KNOW FORMULA
- What has more momentum: a slow moving skateboard or a fast moving truck?
- Explain the two different types of collisions.
- ELASTIC: TWO BASKETBALL HITTING AGAINST EACH OTHER
- INELASTIC: CARTOON RUNNING INTO A WALL

Chapter 3

- List the 6 types of simple machines and give three examples of each one.

INCLINED PLANE: LADDER, STAIRS, WINDSHIELD

- SCREW: JAR LID, LIGHTBULB, NUT AND BOLT
- WEDGE: AXE, DOORSTOP, BOW OF A BOAT
- PULLEY: FLAGPOLE, CRANE, CLOTHESLINE
- LEVER: DOOR, CAN TAB, FISHING ROB
- WHEEL AND AXLE: DOORKNOB, STEERING WHEEL, ROLLERSKATES
- Define the three types of levers and give an example of each.
- FIRST: SEESAW
- SECOND: PAPERCUTTER
- THIRD: BASEBALL BAT
- Explain the difference between the three classes of levers ($\mathbf{F}_{\text {irst }}=$ fulcrum, sec $\underline{\mathbf{O}}$ nd= output, th $\underline{\mathbf{I}} \mathrm{rd}=$ input $)$
- What is the mechanical advantage of each type of lever?
- FIRST: EQUAL TO 1

- SECOND: GREATER THAN1

- THIRD: LESS THAN 1
- What is the MA of a pulley? A screwdriver?
- PULLEY: COUNT THE SECTIONS OF ROPE EXCLUDING THE ONE YOU PULL DOWN ON
- SCREWDRIVER: GREATER THAN ONE
- What are the three ways that a simple machine can make work easier?
- CHANGE THE SIZE OF THE FORCE
- CHANGE THE DISTANCE THE FORCE ACTS ON
- CHANGE THE DIRECTION OF THE FORCE
- Output work never exceeds input work because >>> SOME INPUT WORK IS CONVERTED INTO THERMAL ENERGY BECAUSE OF FRICTION
- What is IMA? THE MECHANICAL ADVANTAGE WHEN FRICTION DOES NOT EXIST. MACHINES CANNOT OPERATE AT THIS
- What is work? FORCE APPLIED OVER A DISTANCE What is power? WORK AT A RATE IN TIME

YOU DO NOT NEED TO KNOW THESE!

- What are they measured in?
- What are the formulas for each?
- If the object is moving, it has what type of energy?
- If the object is getting lifted, it has what type of energy?

Balancing equations

1)	$\mathrm{Au}_{2} \mathrm{~S}_{3}$	+	$3 \ldots \mathrm{H}_{2}$	\rightarrow	2	Au	+	3	$\mathrm{H}_{2} \mathrm{~S}$
2)	$3 \ldots \mathrm{Hg}(\mathrm{OH})_{2}$	+	$2 \ldots \mathrm{H}_{3} \mathrm{PO}_{4}$	\rightarrow		$\mathrm{Hg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	+	6	
3)	SiO_{2}	+	4__HF	\rightarrow		SiF_{4}	+	2	$\mathrm{H}_{2} \mathrm{O}$
4)	12__ HClO_{4}	+	$\mathrm{P}_{4} \mathrm{O}_{10}$	\rightarrow	4	$\mathrm{H}_{3} \mathrm{PO}_{4}$	+	<	$\mathrm{Cl}_{2} \mathrm{O}_{7}$
5)	2_As	+	$6 \ldots \mathrm{NaOH}$	\rightarrow	2	$\mathrm{Na}_{3} \mathrm{AsO}_{3}$	+	3	H_{2}

> Formulas:
> speed= distance/ time
> * $\$ *$ Don't forget Distance-time graphs $* * *$
> * $\$$ firs \dagger points $\&$ last points $* *$
> Force $=$ mass \times acceleration
> Acceleration $=V_{f}-V_{i} /$ time

