Name	
Period	

Trimester 2 Review

Chapter 1

- What is needed to fully describe your position?
- Explain reference direction.
- What is the difference between distance and displacement? (remember what are the 2 question with displacement)
- Compare and contrast the different types of speed.
- What is the unit of speed? What is the equation to find average speed?
- How do you find the average speed of an object on a distance-time graph?
- What is velocity?
- What is acceleration? What are the three ways an object can accelerate?
- What is the formula for acceleration?
- Mark is riding his bicycle uphill. At 5s, his speed is 25m/s. But 5 s later, his speed is 15 m/s. What is the acceleration?
- Make sure you can distinguish the difference between distance-time and speed-time graphs.

Chapter 2

- List 3 contact and 3 noncontact forces.
- What is the difference between weight and mass?
- Explain gravity and the law of universal gravitation.
- Give an example for each type of friction.
- Explain Newton's Laws of Motion. Give an example of each.
- Describe balance and unbalanced forces.
- Why does the coffee in the cup go flying forward when the driver suddenly stops?
- More inertia= more ______
- What is the formula for Newton's second law?
- What keeps an object moving in circular motion?
- What is momentum? What is the formula?
- What has more momentum: a slow moving skateboard or a fast moving truck?
- Explain the two different types of collisions.

Chapter 3

- List the 6 types of simple machines and give three examples of each one.
- Define the three types of levers and give an example of each.
- Explain the difference between the three classes of levers (First= fulcrum, secOnd= output, third= input)
- What is the mechanical advantage of each type of lever?
- What is the MA of a pulley? A screwdriver?
- · What are the three ways that a simple machine can make work easier?
- Output work never exceeds input work because >>>
- What is IMA?
- What is work? What is power? What are they measured in?
- What are the formulas for each?
- If the object is moving, it has what type of energy?
- If the object is getting lifted, it has what type of energy?

Balancing equations

1)	\Au_2S_3	+	H ₂	\rightarrow	Au	+	\H_2S
2)	Hg(OH) ₂	+	H ₃ PO ₄	\rightarrow	Hg ₃ (PO ₄) ₂	+	H2O
3)	SiO ₂	+	HF	\rightarrow	SiF₄	+	H2O
4)	HCIO ₄	+	P ₄ O ₁₀	\rightarrow	H ₃ PO ₄	+	Cl ₂ O ₇
5)	As	+	NaOH	\rightarrow	Na₃AsO₃	+	H2

<u>Formulas</u> :
Speed= distance/ time
★★★ Don't forget Distance-time graphs★★★
★ ★ first points & last points ★ ★
Force= mass x acceleration
Acceleration= $V_f - V_i / time$